Test Tex

Inline math: \(\varphi\)

Displayed math: $$\begin{aligned} \varphi &\Rightarrow \psi \\ \varnothing &\rightarrow A \end{aligned}$$

$$ R_{\mu \nu} - {1 \over 2}g_{\mu \nu},R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu} $$

The equation $$(x_i \cdot x_j)^2$$ is called kernel function and is often written as $$k(x_i, x_j)$$.

$$ \arg\max_\alpha \sum_j \alpha_j - \frac{1}{2} \sum_{j,k} \alpha_j, \alpha_k y_j y_k (x_j \cdot x_k) $$

$$ f(X) = \frac{1}{(2\pi)^{\frac{n}{2} |\Sigma|^{\frac{1}{2}}}} e^{ - \frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu)} $$

$$ \mu_i = \sum_{j=1}^N \frac{p_{ij} x}{n_i} \ \Sigma_i = \sum_{j=1}^N \frac{p_{ij} (x_j - \mu_i) (x_j - \mu_i)^T}{n_i}\ w_i = \frac{n_i}{N} $$

$$ S_i^{(t)} = \big { x_p : \big | x_p - \mu^{(t)}_i \big |^2 \le \big | x_p - \mu^{(t)}_j \big |^2 \ \forall j, 1 \le j \le k \big} $$

(The error above is a demo for incorrect formulas.)

image

built with nostyleplease hugo, thank you y122n20497166 for the footer, thank you reader for your perusal. tips appreciated. say hello, if you’d like. part of the denpa webring

blog 14
cotc 3
drj 2
game 2
love 3
meta 3
mzk 5
others 2